Abstract

Three existing wavelength monitor integrated laser module designs are evaluated. The shortcomings of these designs are resolved by a unique design that eases alignment tasks and greatly enhances the wavelength stability and the wavelength tunability. For example, the wavelength drift over case temperature is 16 times smaller than the best result of previous reports. With the incorporation of thermal compensation, the temperature-induced wavelength drift of the etalon is eliminated. In anticipation, this design enables a worst overall wavelength-drift of 4.41 pm after 25 years of usage to be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.