Abstract

Saliva glucose detection based on quartz crystal microbalance (QCM) technology has become an important research direction of non-invasive blood glucose monitoring. However, the performance of this label-free glucose sensor is heavily deteriorated by the large amount of protein contaminants in saliva. Here, we successfully achieved the direct detection of saliva glucose by endowing the microgels on the QCM chip with superior protein-resistive and glucose-sensitive properties. Specifically, the microgel networks provide plenty of boric acid binding sites to amplify the signals of targeted glucose. The amino acid layer wrapped around the microgel and crosslinking layer can effectively eliminate the impact of non-specific proteins in saliva. The designed QCM sensor has a good linearity in the glucose concentration range of 0-40 mg L-1 in the pH range of 6.8-7.5, satisfying the physiological conditions of saliva glucose. Moreover, the sensor has excellent ability to tolerate proteins, enabling it to detect glucose in 50% human saliva. This result provides a new approach for non-invasive blood glucose monitoring based on QCM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.