Abstract

A novel, stable and highly sensitive non-enzymatic glucose (Glc) sensor was developed using vertically well-aligned multi-walled carbon nanotubes array (MWCNTs) incorporated with cupric oxide (CuO) nanoparticles. The MWCNTs array was prepared by catalytic chemical vapor deposition on a tantalum (Ta) substrate, while a simple and rapid two-step electrodeposition technique was used to prepare the CuO–MWCNTs nanocomposite. First, Cu nanoparticles were deposited onto MWCNTs at constant potential and then they were oxidized into CuO by potential cycling. The electrocatalytic activity of CuO–MWCNTs array was investigated for Glc under alkaline conditions using cyclic voltammetry and chronoamperometry. The sensor exhibited a linear response up to 3 mM of Glc and sensitivity of 2190 μA mM −1 cm −2, which is two to three orders of magnitude higher than that of most non-enzymatic Glc sensors reported in the literature. The sensor response time is less than 2 s and detection limit is 800 nM (at signal/noise = 3). When tested with human blood serum samples, the sensor exhibited high electrocatalytic activity, stability, fast response and good selectivity against common interfering species, suggesting its potential to be developed as a non-enzymatic Glc sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call