Abstract

We report here the development, optimization, and evaluation of a highly sensitive method for the determination of fluorine in biological matrices employing highresolution continuum source molecular absorption spectrometry (HR-CS MAS), suitable for pharmacological testing of fluorine-containing drug candidates. For this purpose, the most important parameters were studied in detail and subsequently optimized using a multivariate approach based on experimental design methodology. We developed a new approach employing a graphite tube lined with tantalum foil, thereby significantly enhancing sensitivity, while interferences from phosphorus monoxide (PO) molecular absorption due to the complex phosphate-rich matrix were completely eliminated. The limit of detection and the characteristic mass were 5.79 and 6.08 pg F, respectively. In order to evaluate the accuracy of the procedure, a recovery test was performed using spiked samples from three bioassays (i.e., DNA binding, protein binding, and cellular uptake) and the recovery rates ranged from 97.4 to 106.4%. The proposed method is applicable for preclinical in vitro testing of fluorinated drug molecules and thereby establishes HR-CS atomic absorption spectrometry instrumentation as a universal tool in medicinal chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call