Abstract

Ion−conducting hydrogels show significant potential in plant growth monitoring. Nevertheless, traditional ionic hydrogel sensors experience substantial internal creep and inadequate sensitivity, hindering precise plant growth monitoring. In this study, we developed a flexible hydrogel sensor composed of polyvinyl alcohol and acrylamide. The hydrogel sensor exhibits low creep and high sensitivity. Polyvinyl alcohol, acrylamide, and glycerol are crosslinked to create a robust interpenetrating double network structure. The strong interactions, such as van der Waals forces, between the networks minimize hydrogel creep under external stress, reducing the drift ratio by 50% and the drift rate by more than 60%. Additionally, sodium chloride and AgNWs enrich the hydrogel with conductive ions and pathways, enhancing the sensor’s conductivity and demonstrating excellent response time (0.4 s) and recovery time (0.3 s). When used as a sensor for plant growth monitoring, the sensor exhibits sensitivity to small strains and stability for long−term monitoring. This sensor establishes a foundation for developing plant health monitoring systems utilizing renewable biomass materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.