Abstract

A highly sensitive procedure for determining ascorbic acid (AA) and dehydroascorbic acid (DHAA) by high-performance liquid chromatography with electrochemical detection in biological fluids, tissues, and foods is described. AA is separated in a C18 reverse-phase column after extraction from the sample with metaphosphoric acid. An aliquot of 20 μl of diluted extract is injected into the column for the estimation of AA. DHAA is indirectly estimated by converting it to AA after reduction with dl-homocysteine at pH 7.0–7.2 for 30 min at 25°C. After dilution, a 20-μl aliquot is injected into the column to obtain total vitamin C (AA + DHAA). The concentration of DHAA is calculated by subtraction. AA can be reproducibly quantified at concentrations as low as 50 pg 20 μ l of sample extract. The method described here used a specially designed mobile phase, gave greater stability and a noiseless baseline, and increased substantially the sensitivity and precision. The procedure is rapid, analysis being completed within 10 min after sample preparation, and has been successfully applied to biological fluids, tissues, and foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.