Abstract

Letrozole is an anticancer medication prescribed for the management of estrogen receptor-positive breast cancer in postmenopausal women. Chronic pain is prevalent in patients receiving chemotherapy, leading to the use of adjuvant analgesics such as tramadol. This work introduces the first analytical approach for the concurrent quantification of letrozole and tramadol, two co-administered drugs, employing a rapid, highly sensitive, eco-friendly, and cost-effective first derivative synchronous spectrofluorimetric technique. The fluorescence of tramadol and letrozole was measured at wavelengths of 235.9 nm and 241.9 nm, respectively using a wavelength difference (Δλ) of 60.0 nm. The developed approach demonstrated exceptional linearity (r ˃ 0.999) within the specified concentration ranges for tramadol (10.0–1200.0 ng/mL) and letrozole (1.0–140.0 ng/mL). The results demonstrated that the proposed technique exhibits a high level of sensitivity, with detection limits of 0.569 and 0.143 ng/mL for tramadol and letrozole, respectively, indicating the good bioanalytical applicability. The within-run precisions, both intra-day and inter-day, for both analytes, were less than 0.71 % RSD. The developed approach was effectively applied to simultaneously estimate the mentioned drugs in their tablets and human plasma samples, achieving high percentage recoveries and low % RSD values. In order to assess the environmental sustainability of the developed approach, Analytical GREEnnessNNESS (AGREE) and the Green Analytical Procedure Index (GAPI) metric tools were employed. Both tools revealed that the developed approach is excellent green, suggesting its usage as an environmentally-friendly alternative for the routine assayof the investigated pharmaceuticals. The developed approach was validated according to the ICHQ2 (R1) requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.