Abstract

In this work, a sensitive and selective electrochemical aptasensor for determination of microcystin-LR (MC-LR) was developed based on a dual signal amplification system consisting of a novel ternary composite and horseradish peroxidase (HRP). The ternary composite was prepared by depositing gold nanoparticles (AuNPs) on molybdenum disulfide (MoS2) covered TiO2 nanobeads (TiONBs). MoS2 nanosheet modified TiONBs provided a large surface area for immobilization of AuNPs and biomolecules. The ternary composite also possesses an improved electron transfer and catalytic capability. To construct the aptasensor, thiolated MC-LR aptamers were immobilized on the AuNP@MoS2-TiONB modified electrode through a gold-sulfur bond. Then, biotin-cDNA with a sequence complementary to the MC-LR aptamer competed with MC-LR for binding to the immobilized aptamer. The current signal catalyzed by avidin-HRP decreased with the increase of MC-LR, based on which a linear range of 0.005-30 nM and a detection limit of 0.002 nM were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.