Abstract
A new process is developed to fabricate a highly sensitive and selective hydrogen sensor by depositing a partially crystalline and highly oriented film of MoS2 from its single layer suspension on an alumina substrate. When these films are promoted with some catalysts selected from Pt-group metals (Pt, Pd, Ru or any combination of these metals) they exhibit a high sensitivity and selectivity to hydrogen gas. Unlike other metal oxide sensors which are sensitive to many reducing and oxidizing gases and operate at a temperature of 350 °C or higher; this sensor is highly selective to hydrogen gas and its operating temperature is from 25 to 150°C. The lower operating temperature enhances safety when dealing with hydrogen gas. The sensor response to hydrogen at 120 °C is linear in concentration from 30 to 104 ppm with a 10 to 30 second response time and a 45 to 90 second recovery time. Above 104 ppm the sensor is still linear but the slope of conductance versus hydrogen concentration changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Physics A Materials Science & Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.