Abstract

Developing the high selectivity and sensitivity strategy for nucleic acid detection is crucial for early diagnosis and therapy of diseases. In this work, a novel low back-ground fluorescent sensor platform for the detection of nucleic acid has been developed based on δ-FeOOH nanosheets integrating with exonuclease III-assisted target-recycling signal amplification. Because of the strong binding ability between the single-strand DNA (ssDNA) and the δ-FeOOH nanosheets, the dye-labeled ssDNA probe would be quenched by δ-FeOOH nanosheets through fluorescence resonance energy transfer (FRET). By using magnetic separate properties of δ-FeOOH, the background signal was separated from the sensor system, and the low background sensor system was obtained. After adding the target DNA, a double-strand DNA complex (dsDNA) would be formed between the target DNA and dye-labeled ssDNA probe. Then, the dye-labeled ssDNA probe in the dsDNA complex would be stepwise hydrolyzed into short fragments from 3′-terminus by Exonuclease III, and the fluorescence signal was recovered due to the weak bind affinity between the short fragments and δ-FeOOH nanosheets. By using the fluorescence quenching ability of δ-FeOOH nanosheets and enzyme-assisted target-recycling signal amplification, this strategy could show an excellent selectivity toward hepatitis C virus DNA with a low detection limit of 10 pM. By simply changing the dye-labeled ssDNA probe sequence, this sensing platform can be developed as a universal approach for the simple, sensitive, and selective detection of different target DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call