Abstract
Few layered graphene nanosheets were successfully doped with nitrogen through microwave irradiation and thoroughly characterized by using electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The electrochemical efficiency of N-doped graphene toward enzyme-free detection of uric acid (UA) and dopamine (DA) at neutral pH (7.4) was studied by chronoamperometry and cyclic voltammetry measurements. At working potential of +0.3 V (vs. Ag/AgCl), N-doped graphene electrode revealed ultra-high sensitivity of 2.06 mA mM−1 cm−2 and low limit of detection (LOD) of 0.13 μM within a concentration range of 0 to 0.6 mM for UA detection. Also, at very higher potential of +1.8 V (vs. Ag/AgCl), N-doped graphene sensor exhibited a highly selective response toward DA with very low LOD of 4.5 nM and high sensitivity of 7.63 mA mM−1 cm−2 in a broad linear concentration range from 0.1 to 100 μM. Furthermore, the performance of UA and DA sensors in the real blood sample was satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.