Abstract

Molecular beacon (MB)-based sensing platforms that consist of a fluorogen-quencher pair play an important role in medical and biological researches. However, the synthesis of both fluorogen and quencher in the nucleic acid probes will increase the burden of organic synthesis works and induce the difficulties for precisely controlling the relative distance between fluorogen and quencher, which may lead to false-positive and false-negative results. In this work, initially we report a single labeled MB (FAM-MB, with carboxyfluorescein as fluorogen and without quencher) thus simplifies MBs with the aid of graphene oxide (GO) to detect telomerase activity. To further simplify this structure, namely label-free strategy, we design a facile, sensitive and selective platform using a label-free beacon (AIE-MB, without fluorogen and quencher), based on aggregation-induced emission fluorogen (silole-R). Upon the addition of telomerase, AIE-MB induced comb-like DNA structure leads to high aggregation of silole-R and thus exhibits strong fluorescence emission. By exploitation of this, we can detect telomerase with superior sensitivity and demonstrate their applications in bladder cancer diagnosis. Compared to single-labeled FAM-MB based telomerase activity assay, the label-free AIE-MB induced method could perform the sensitive detection with high signal-to-background ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call