Abstract
A benzothiazole-azo based sensor (BTAN) was developed for rapid and on-site detection of arginine. The sensor's selectivity in a semi-aqueous medium was thoroughly investigated, focusing on the colorimetric response to arginine in the presence of 11 different amino acids. Notably, the limit of detection (LOD) for arginine was determined to be 0.7 μM. The underlying sensing mechanism was addressed using 1H-NMR and UV-vis spectroscopy. BTAN exhibited significant changes in both absorption as well as emission spectra exclusively in the presence of arginine. Furthermore, the arginine sensing capability was extended to the solid state by immobilizing BTAN into a starch-PVA hydrogel matrix as well as paper strips. The hydrogel film of BTAN enabled effective on-site sensing of arginine in a 100% aqueous medium. Moreover, the practicability of the sensor was demonstrated by detecting arginine in human blood samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analytical methods : advancing methods and applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.