Abstract
In the current study, one of the outstanding facile and simple protocols is proposed for the synthesis of copper nanoparticles (CuNPs) using NaBH4 as a reducing agent and p-tetranitrocalix[4]arene (p-TNC4) as a capping agent. According to our knowledge, no such technique is available in the literature for colorimetric detection of cyclophosphamide (CPA) using CuNPs at the trace level. The well-organized synthesis was confirmed via advanced spectroscopic techniques. The crystallite size, shape, phase purity, and morphological characteristics were determined via XRD, AFM, FT-IR, and UV-visible spectroscopy. At the optimal conditions for CPA detection, the sensor reveals an excellent sensitivity, selectivity, as well as stability with LOD and LOQ 20nM and 60nM, respectively. However, the proposed sensor showed excellent potential and selectivity for the sensing of colorimetric detection of CPA that can be effectively applied to real blood serum samples. The proposed approach is better suited as compared to reported protocols in terms of handling, simplicity, economic, energy consumption, reproducibility, and excellent performance in a very short time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.