Abstract

A selective and rapid method was developed for quantification of curcumin in human plasma and food samples using molecularly imprinted magnetic multiwalled carbon nanotubes (MMWCNTs) which was characterized with EDX and FESEM. The role of sorbent mass, volume of eluent and sonication time on response in solid phase microextraction procedure were optimized by central composite design (CCD) combined with response surface methodology (RSM) using Statistica. Preliminary experiments reveal that among different solvents, methanol:dimethyl sulfoxide (4:1V/V) led to efficient and quantitative elution of analyte. A reversed-phase high performance liquid chromatographic technique with UV detection (HPLC-UV) was applied for detection of curcumin content. The assay procedure involves chromatographic separation on analytical Nucleosil C18 column (250×4.6mm I.D., 5μm particle size) at ambient temperature with acetonitrile-water adjusted at pH=4.0 (20:80, v/v) as mobile phase at flow rate of 1.0mLmin-1, while UV detector was set at 420nm. Under optimized conditions, the method demonstrated linear calibration curve with good detection limit (0.028ngmL-1) and R2=0.9983. The proposed method was successfully applied to biological fluid and food samples including ginger powder, curry powder, and turmeric powder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.