Abstract

A new fluorescent chemosensor (An3) bearing anthracenyl rings was designed and developed for detection of Zn2+. Addition of Zn2+ into An3 gave rise to a fluorescent turn-on response at 424 nm whereas Al3+, Cd2+, Co2+, Cu2+, K+, Mg2+, Zn2+, Ca2+, Fe3+, Mn2+, Ni2+, Pb2+, and Hg2+ did not induce any emission intensity enhancement. Furthermore, the probe exhibited high selectivity toward Zn2+ and a very low detection limit (36 nM) based on chelation-enhanced fluorescence. Theoretical calculations revealed the possible formation of 1:1 and 1:2 complexes between An3 and Zn2+. In bioimaging experiments, the chemosensor displayed low cytotoxicity and good biocompatibility, rendering it an effective tool for fluorescent visualization of Zn2+ in living cells and zebrafish models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call