Abstract
Reproducing the outstanding selectivity achieved by biological ion channels in artificial channel systems can revolutionize applications ranging from membrane filtration to single-molecule sensing technologies, but achieving this goal remains a challenge. Herein, inspired by the selectivity filter structure of the KcsA potassium channel, we propose a design of biomimetic potassium nanochannels by functionalizing the wall of carbon nanotubes with an array of arranged carbonyl oxygen atoms. Our extensive molecular dynamics simulations show that the biomimetic nanochannel exhibits a high K+ permeation rate along with a high K+/Na+ selectivity ratio. The free energy calculations suggest that the low Na+ permeability is the result of the higher energy barrier for Na+ than K+ at the channel entrance and ion binding sites. In addition, reducing the number of ion binding sites leads to an increase in the permeation rate but a decrease in selectivity. These findings not only hold promise for the design of high-performance membranes but also help understand the mechanism of selective ion transport in biological ion channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.