Abstract
Excessive amount of antibiotics have serious detrimental effects on the environment, making precise monitoring and removal increasingly crucial. Trimethoprim (TMP) is a typical kind of antibiotic. Herein, a novel microdetector was fabricated on the matrix of acupuncture needle (AN). The functional interface was constructed using a green electrosynthesis method, incorporating three-dimensional coral-like gold nanorods (3D-CAuNRs), polydopamine (pDA), polypyrole (pPY) and TMP molecules. Characterization was performed using electrochemistry, high-resolution SEM and elemental mapping techniques. Notably, nanocavities were formed through electropolymeric molecular imprinting, resulting in highly selective and sensitive detecting of TMP. This was attributed to the structure-complementary and configuration-suitable microenvironment, facilitating specific electron-transfer. The intrinsic properties of the microsensor were thoroughly investigated. Under optimized conditions, the sensor exhibited a wide linear range of 0.05 ∼ 50 µmol/L with a low limit detection of 0.017 µmol/L (S/N = 3) for TMP, along with high selectivity, reproducibility, and stability. Furthermore, the sensor demonstrated applicability for detecting TMP in environmental water, soil and cefalexin and trimethoprim capsules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.