Abstract

Abstract A new fluorescent sensor, N-allyl-4-[(2-(3-methoxysalicylaldimino)ethylamino]-1,8-naphthalimide (HL), for Hg2+ has been developed where the Schiff base substituent acts as a recognition group. This sensor shows a large Stokes shift of 3535–4042 cm−1 and a general fluorescence quantum yield of 0.05, 249–0.11, 866 in organic solvents of different polarity as expected. It also exhibits highly selective and a sensitive response to Hg2+ (Ф Hg+HL/Ф HL = 2.28) over other metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Pb2+, Fe3+, Ni2+, Zn2+, Cu2+, Ag+, Co2+, Cr3+, Mn2+ and Cd2+) in solution (DMF/Tris-HCl buffer, 1:1, v/v, pH = 7.2). The Hg2+-induced fluorescence enhancement at 526 nm is proportional to the concentration of Hg2+ in the range of 0.5–4.0 µm with a detection limit of 0.18 µm. Based on the fluorescence titration and a Job’s plot analysis, the metal-to-ligand ratio of the complex is 2:1 with a binding constant of 1.56 × 1012 m −1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call