Abstract

Graphene-based materials, namely commercial graphene (cm-G), commercial graphene oxide (cm-GO), reduced graphene oxide (rGO), and synthesized graphene oxide (OIHM-GO), and their composites with polyindole (PIn) were used as sensing materials for methanol vapor. The synthesized graphene oxide was prepared by the optimized improved Hummers' method. rGO was prepared from cm-GO by two different methods: thermally mild reduction at 120 °C to yield T-rGO and chemical reduction by ascorbic acid to yield C-rGO. Graphene-based material/polyindole composites were prepared by in situ polymerization. In this report, the sensing responses were evaluated from the responsive electrical currents at room temperature. cm-GO showed the highest methanol response because it possessed the highest number of oxygen species, which act as the active sites. The relative electrical conductivity response of the in situ cm-GO/dPIn composite to methanol was the highest amongst the composites. The in situ OIHM-GO/dPIn composite possessed the high relative conductivity response of 81.89 ± 2.12 at 11.36 ppm, a sensitivity of 7.37 ppm−1 with R2 of 0.9967 in the methanol concentration range of 1.14–11.36 ppm, a theoretical LOD of 0.015 ppm, and repeatability of at least 4 cycles with good selectivity. This work represents the first report of the preparation and testing of graphene-based materials/polyindole composites as methanol sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.