Abstract

This paper reports a highly reliable electrostatic microelectromechanical systems (MEMS) relay for high-power switching applications. The main proposal to elevate reliability is to reduce thermal damage in the contact area. Since a contact resistance is the key parameter determining the amount of Joule-heating and the corresponding thermal damage, we devised a unique spring structure to maximize the contact force (resulting in a low contact resistance) using a reasonable actuation voltage named a two-step spring system. Another important feature was applied to alleviate Joule-heating, which is to use an insulator having high thermal conductivity to dissipate the generated heat efficiently, named a heat sink insulator. The fabricated MEMS relay exhibited 2 mΩ in contact resistance, which is the lowest level reported so far with an actuation voltage of 45 V. Reliability was remarkably enhanced over ten times by the heat sink insulator. Consequently, by applying these two approaches simultaneously, the fabricated MEMS relay was successfully operated up to the 5.3 ×10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> cycles at 1 V/200 mA in ambient air and hot switching condition, which is the highest reliability reported at that power level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.