Abstract

Lately, the progressive study of metal-organic frameworks (MOFs) for the detection of ammonia and amines has made infusive achievements. Nevertheless, the investigation of proton-conductive MOFs used to detect the low concentrations of ammonia and amine gases at different relative humidities (RHs) at room temperature is relatively restricted. Herein, by solvothermal reaction of Cd(NO3)2 with 2-methyl-1 H-imidazole-4,5-dicarboxylic acid (H3MIDC), a three-dimensional ionic MOF {Na[Cd(MIDC)]} n (1) bearing ordered one-dimensional channels was successfully synthesized. Our research indicates that the uncoordination carboxylate sites are beneficial to proton transfer and the recognition of ammonia and amine compounds. The optimized proton conductivity of 1 reaches a high value of 1.04 × 10-3 S·cm-1 (100 °C, 98% RH). The room temperature sensing properties of ammonia and amine gases were explored under 68, 85, and 98% RHs, respectively. Satisfactorily, the detection limits of MOF 1 toward ammonia, methylamine, dimethylamine, trimethylamine, and ethylamine are 0.05, 0.1, 0.5, 1, and 4 ppm, respectively, which is one of the best room-temperature sensors for ammonia among previous sensors based on proton-conductive MOFs. The proton conducting and sensing mechanisms were highlighted as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.