Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious superbug that is potentially life-threatening. Among conventional antibiotics, vancomycin is a “gold standard” agent used to treat serious MRSA infections. Such therapy, however, is often ineffective because of the emergence of less-susceptible strains. Therefore, the exploration of new antimicrobial agents, especially nonantibiotic drugs, to cope with the growing threat of MRSA has become an urgent necessity. Herein, we have investigated the possibility to develop a metallacarborane antimicrobial agent, cobalt bis(1,2-dicarbollide) alkoxy derivative (K121), and we have evaluated the relevant anti-MRSA behaviors. We demonstrated that K121 has a dose-dependent anti-MRSA activity with a low minimal inhibitory concentration of 8 μg/mL and a high selectivity over mammalian cells. In particular, a high bacteria-killing efficiency was observed with eradication of all MRSA cells within 30 min. In addition, K121 showed a high inhibition effect on t...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.