Abstract

BackgroundWe developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the ‘reference’ genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates.ResultsSequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations.ConclusionsWe developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.

Highlights

  • We developed and characterised a highly mutagenised Targeting Induced Local Lesions in Genomes (TILLING) population of the barley (Hordeum vulgare) cultivar Golden Promise

  • We demonstrate the value of our resource by identifying multiple putatively deleterious mutations in 46 genes involved in meiosis and recombination and based on these results discuss whether sequencing barley mutant populations using e.g. exome sequencing, as successfully done in polyploid wheat [19], would be a feasible and valuable long-term strategy for the barley research community

  • We developed three streams of genetic materials: a structured mutant population for carrying out reverse genetics using a modified TILLING approach; a bulk seed resource for forward genetics screens and a phenotypically semi-sterile sub-population for research on meiosis and recombination (Fig. 1)

Read more

Summary

Introduction

We developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the ‘reference’ genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Golden Promise, a popular malting barley in the UK released in 1968 and still used by the Scotch Whisky industry today, is a γ-ray mutant of the cv. Maythorpe generated originally in 1956 [4] It carries a loss-of-function mutation in the barley orthologue of rice DENSE AND ERECT PANICLE 1 (HvDEP1), a heterotrimeric G-protein AGG3-type subunit encoding gene that positively regulates culm elongation and seed size [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call