Abstract

AbstractZeolites are crystalline microporous aluminosilicates with periodic arrangements of cages and well‐defined channels, which make them very suitable for separating ions of different sizes, and thus also for use in battery applications. Herein, an ultra‐thin ZSM‐35 zeolite flake was introduced onto a poly(ether sulfone) based porous membrane. The pore size of the zeolite (ca. 0.5 nm) is intermediary between that of hydrated vanadium ions (>0.6 nm) and protons (<0.24 nm). The resultant membrane can thus be used to perfectly separate vanadium ions and protons, making this technology useful in vanadium flow batteries (VFB). A VFB with a zeolite‐coated membrane exhibits a columbic efficiency of >99 % and an energy efficiency of >81 % at 200 mA cm−2, which is by far the highest value ever reported. These convincing results indicate that zeolite‐coated membranes are promising in battery applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.