Abstract
Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM) mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino)-17-demethoxy geldanamycin (17AAG). Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM) to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2). These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents.
Highlights
Human glioblastoma multiforme (GBM) is one of the most devastating cancers
We show that GBM cell lines can be highly invasive after experimental lung metastasis (ELM) selection, but they still are not metastatic when implanted in the brain
The lack of extracranial metastasis of the derivative GBM-M2 cell lines strongly suggests that rapid tumor growth or the unique CNS environment curtails the escape of tumor cells [14]
Summary
Human glioblastoma multiforme (GBM) is one of the most devastating cancers. Extensive tumor cell invasion occurs into normal brain parenchyma, making it virtually impossible to remove the tumor completely by surgery and inevitably causing recurrent disease [1]. For GBM cell lines in common use, comparison of gene expression profiles from cell culture, subcutaneous xenografts, or intracranial xenografts can differ significantly within the same cell line; yet different GBM cell lines from orthotopic models exhibit similar gene profiling patterns [2]. Glial progenitor cells can form invasive orthotopic glioblastoma tumors when driven by plateletderived growth factor (PDGF) [3]. Sorting of CD133-positive tumor stem cells from glioblastoma tumors yields highly angiogenic and aggressive orthotopic tumors in mice [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.