Abstract

This paper presents a single-stage tri-path buck converter with reduced inductor current and self-balanced flying capacitor voltage. The proposed converter introduces capacitor paths to reduce the average inductor current and inductor current ripple, hence decreasing the conduction loss. Operating with two states per conversion cycle, it exhibits a relatively low voltage conversion ratio of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${D}$ </tex-math></inline-formula> /(1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$+\,\,2{D}$ </tex-math></inline-formula> ). Besides, it realizes a self-balanced flying capacitor voltage in the charge redistribution phase. Similar to the conventional buck converter, the proposed converter in continuous-current mode only has two complex poles. Therefore, we design a Type-III compensator to obtain a good transient response. Moreover, the circuit does not require extra supplies for gate drivers due to the reutilization of the flying capacitor voltages, eliminating additional circuit and power overheads. The proposed converter, validated in a 65-nm standard CMOS technology, regulates a 0.7 V – 1 V output voltage from a 3.3 V – 4 V input voltage, delivering a maximum output power of 270 mW. The peak efficiency is 84%, with a switching frequency up to 5 MHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call