Abstract

Catalytic wet air oxidation (CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO2 with excellent stability was used as the carrier to ensure the long-term anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140 °C, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L−1 could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.