Abstract
We develop a fast and robust algorithm for solving large scale convex composite optimization models with an emphasis on the $\ell_1$-regularized least squares regression (Lasso) problems. Despite the fact that there exist a large number of solvers in the literature for the Lasso problems, we found that no solver can efficiently handle difficult large scale regression problems with real data. By leveraging on available error bound results to realize the asymptotic superlinear convergence property of the augmented Lagrangian algorithm, and by exploiting the second order sparsity of the problem through the semismooth Newton method, we are able to propose an algorithm, called {\sc Ssnal}, to efficiently solve the aforementioned difficult problems. Under very mild conditions, which hold automatically for Lasso problems, both the primal and the dual iteration sequences generated by {\sc Ssnal} possess a fast linear convergence rate, which can even be superlinear asymptotically. Numerical comparisons between our approach and a number of state-of-the-art solvers, on real data sets, are presented to demonstrate the high efficiency and robustness of our proposed algorithm in solving difficult large scale Lasso problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.