Abstract

Alkaline water electrolysis is a well-established conventional technique for hydrogen production. However, due to its relatively high energy consumption, the cost of hydrogen produced by this technique is still high. Here in this work, we report for the first time the application of alkaline zinc hydroxide solution (composed of sodium zincate and potassium zincate in NaOH and KOH solutions, respectively) as an efficient, simple and recursive electrolyte for producing clean hydrogen through a continuous dual-step electrolysis process. The ionic conductivity, electrodes current density, and hydrogen evolution rate were measured in a wide range of the electrolyte concentrations (0.1-0.59 M). Also, the cell efficiency was studied at different ranges of current density (0.09-0.25 A/cm2) and applied potential (1.8-2.2 V). Results indicated that the application of alkaline zinc hydroxide solution at the optimum electrolyte concentration can enhance the hydrogen evolution rate minimally by a factor of 2.74 (using sodium zincate) and 1.47 (using potassium zincate) compared to the conventional alkaline water electrolysers. The results of this study could be helpful to better understand the electrochemical behaviour of the alkaline water electrolysers when sodium zincate and potassium zincate are used as ionic activators for enhancing hydrogen evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call