Abstract

SmCl3 (20 mol%) has been used as an efficient catalyst for reaction between aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione at 120°C to give 1,8-dioxo-octahydroxanthene derivatives in high yield. The same reaction in water, at room temperature gave only the open chain analogue of 1,8-dioxo-octahydroxanthene. Use of eco-friendly green Lewis acid, readily available catalyst and easy isolation of the product makes this a convenient method for the synthesis of either of the products.

Highlights

  • SmCl3 (20 mol%) has been used as an efficient catalyst for reaction between aromatic aldehydes and 5,5-dimethyl1,3-cyclohexanedione at 120°C to give 1,8-dioxo-octahydroxanthene derivatives in high yield

  • Considering that there is a need for the use of more useful greener acid catalyst we examined SmCl3, a water resistant, reusable, lanthanide Lewis acid for the synthesis of 1,8-dioxo-octahydroxanthenes

  • Heating the neat reaction mixture in presence of SmCl3 (20 mol%) at 120°C for 8 h, led to the formation of cyclised product 4d in excellent yield. Based on these results it was concluded that use of SmCl3 (10 mol %) in water, at room temperature and SmCl3 (20 mol %) without solvent at 120°C would be the useful conditions for the formation of open chain compound 3d and the 9-phenyl1,8-dioxo-octahydroxanthane (4d) respectively

Read more

Summary

Results and Discussion

Reaction between 4-NO2-benzaldehyde (1d, 1 mole) and dimedone (2, 2 mole) in presence of SmCl3 was identified as the test reaction and different reaction parameters were studied for the formation of corresponding 1,8-dioxo-octahydroxanthene. Considering the fact that SmCl3 is a water resistant Lewis acid the reaction was carried out in water at room temperature (RT). The reaction was complete in 15 min. It was only, the open chain, compound 2,2’-((4-nitrophenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone)

No Solvent
Sulfamic acid 10
Conclusion
H O Ar O
26. Kim BS
Findings
41. Bigdeli M
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.