Abstract

AbstractA new series of wide‐bandgap materials, 4‐dipenylphosphine oxide‐4′‐9H‐carbazol‐9‐yl‐tetraphenylsilane (CSPO), 4‐diphenylphosphine oxide‐4′,4″‐di(9H‐carbazol‐9‐yl)‐tetraphenylsilane (pDCSPO), 4‐diphenylphosphine oxide ‐4′‐[3‐(9H‐carbazol‐9‐yl)‐carbazole‐9‐yl]‐tetraphenylsilane (DCSPO), 4‐diphenylphosphine oxide‐4′,4″,4″′‐tri(9H‐carbazol‐9‐yl)‐tetraphenylsilane (pTCSPO) and 4‐diphenylphosphine oxide ‐4′‐[3,6‐di(9H‐carbazol‐9‐yl)‐9H‐carbazol‐9‐yl]‐tetraphenylsilane (TCSPO), containing different ratios and linking fashions of p‐type carbazole units and n‐type phosphine oxide units, are designed and obtained. DCSPO is the best host in FIrpic‐doped devices for this series of compounds. By utilizing DCzSi and DPOSi as hole‐ and electron‐transporting layers, a high EQE of 27.5% and a maximum current efficiency of 49.4 cd A−1 are achieved in the DCSPO/FIrpic doped device. Even at 10 000 cd m−2, the efficiencies still remain 41.2 cd A−1 and 23.0%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call