Abstract

In the field of photonics, alkali copper(I) halides attract considerable attention as lead-free emitters. The intrinsic quantum confinement effects originating from low-dimensional electronic structure lead to high photoluminescence quantum yields (PLQYs). Among them, Cs3 Cu2 I5 is the most promising candidate, satisfying both high PLQY and air stability. In this study, a strategy to explore a new material meeting these requirements through the use of the mixed-anions of I- and Cl- is proposed. The expectation is maintained that the large difference in ionic radii between them likely results in the formation of a novel compound. Consequently, Cs5 Cu3 Cl6 I2 with a 1D zigzag chain structure is discovered. This material exhibits blue emission (≈462nm) with a near-unity quantum yield of 95%. An electronic structure calculation reveals that the localized nature of the valence band maximum is crucial in obtaining efficient self-trapped exciton emission. Moreover, the iodine-bridged 1D connectivity significantly enhances the chemical stability of Cs5 Cu3 Cl6 I2 , compared with the pure chloride phase. The present findings provide a new perspective for developing air-stable alkali copper(I) halides with highly efficient luminescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.