Abstract

The scalar auxiliary variable (SAV) approach [42] is a very popular and efficient method to simulate various phase field models. To save the computational cost, a new SAV approach is given in [25] by introducing a new variable θ. The new SAV approach can be proved to save nearly half CPU time of the original SAV approach while keeping all its other advantages. In this paper, we propose a novel technique to construct an exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach without introducing any extra variables. The new proposed method also only needs to solve one linear equation with constant coefficients at each time step. Furthermore, the constructed ESI-SAV method does not need the bounded below restriction of nonlinear free energy potential which is more reasonable and effective for various phase field models. Meanwhile it is easy to construct first-order, second-order and higher-order unconditionally energy stable time-stepping schemes. Other than that, the ESI-SAV approach can be proved to be effective to solve the non-gradient but dissipative system such as Navier-Stokes equations. Several numerical examples are provided to demonstrate the improved efficiency and accuracy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.