Abstract

A glassy carbon electrode modified with electrochemically polymerized methyl orange (PMO) and multi-walled carbon nanotubes (MWCNT) was developed. The morphologies of the fabricating materials (PMO and MWCNT) were investigated by field-emission scanning electron microscopy (FE-SEM). The designed sensor was used for the sensitive determination of amodiaquine (AQ), an anti-malaria drug. AQ was developed as an alternative to chloroquine because of its activity against chloroquine-resistant Plasmodium falciparum (P. falciparum) parasites. The modified electrode was employed to study the electrochemical oxidation of AQ using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Under optimal experimental conditions, DPV exhibited a linear response in the concentration range from 1.0 × 10−7 to 3.5 × 10−6 mol L−1 with a limit of detection (LOD) of 8.9 × 10−8 mol L−1. Furthermore, the number of electrons and protons involved in the electrochemical study of AQ was also calculated and a plausible mechanism for the electro-oxidation of AQ was deduced. The developed sensor demonstrated analytical applicability as it was successfully employed to determine the drug AQ in pharmaceutical formulations and human urine samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.