Abstract

The electrical resistance change of a highly extensible composite consisting of a network of entangled multi-wall carbon nanotubes in a thermoplastic polyurethane elastomer is tested. The composite is prepared by taking a non-woven polyurethane filter membrane, enmeshing it with carbon nanotubes and melding them together. Testing has shown that the material can be elongated as much as 400% during which the resistance is increased more than 270 times. It indicates favorable properties of the composite for its use as a highly-deformation strain sensing element, a strain-electric signal transducer, electromagnetic field shielding and protection against lightning. As an example of its use as a strain sensor, human knee flexion and knee cyclic movement has been monitored. This may be of use in orthopedics and rehabilitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.