Abstract
To solve the oxygen dependence problem of photodynamic therapy (PDT), it is critical to explore photosensitizers that do not rely on O2 molecule to generate reactive oxygen species (ROS). Herein, a stable cationic metal‐organic cage [Pd6(RuLoz3)8](BF4)28 (MOC‐88) that possesses high +28 charges is designed. The cage‐confined positive microenvironment enables efficient generation of hydroxyl radicals and improved yield of the singlet oxygen under one‐/two‐photon excitation, showing excellent performance to concurrently enhance Type‐II and O2‐independent‐Type‐I PDT. Moreover, the effective ROS production and robust lipid peroxidation trigger a series of signaling pathways (inflammasome, cyclic guanosine monophosphate–adenosine monophosphate synthase stimulator of interferon genes, and NF‐κB) to evoke PANoptosis and ferroptosis in tumor cells, enabling MOC‐88 to simultaneously cause the loss of cell membrane integrity, release a series of inflammatory cytokines and damage‐associated molecular patterns, stimulate the maturation and antigen presentation ability of dendritic cells, and ultimately activate T‐cell‐dependent adaptive immunity in vivo to inhibit tumor growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.