Abstract
An equimolar mixture of a carboxylic acid and acetic anhydride produces a reagent combination that undergoes a highly efficient decarbonylation/dehydration at 250[degrees]C using either Pd- or Rh-based catalyst systems, affording excellent yields of the corresponding 1-alkenes and one less carbon atom. The stoichiometric and catalytic decarbonylation of aliphatic aldehydes and acid chlorides to alkanes and alkenes, respectively, by transition-metal complexes are well-known and synthetically useful transformations. Relatively little, however, has been reported concerning the analogous decarbonylation/dehydration of aliphatic carboxylic acids to olefins, with generally poor results achieved in terms of catalyst efficiency and selectivity toward terminal olefin formation in the product. For example, the decarbonylation/dehydration of stearic acid to heptadecane using a Rh-based catalyst was reported to proceed with a maximum catalyst turnover number (TON; moles of olefin product formed per mole of catalyst used) of ca. 250, with selectivities toward 1-heptadecene formation typically below 50%. Interestingly, results were presented in this work which suggested that the decarbonylation of stearic acid proceeded via intermediate formation of stearic anhydride. Use of a preformed, symmetrical anhydride is not desirable from an economic or synthetic viewpoint, particularly since its decarbonylation should result in the formation of equal amounts of olefin and carboxylic acidmore » coproducts. The authors now report here that the use of a carboxylic acid substrate as an equimolar mixture with acetic anhydride (Ac[sub 2]O) produces a mixed anhydride system which undergoes an extremely facile decarbonylation reaction to provide a general and highly selective route to the corresponding 1-alkenes of one less carbon atom. 19 refs., 1 tab.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.