Abstract

An exceptionally high-performance, high-birefringent photonic crystal fiber (PCF) is meticulously designed. The core design features a unique arrangement in which the central row of circular air holes is substituted by three rows of smaller circular holes. Subsequently, the middle row is adjusted to achieve various rectangular mode field configurations. With the optimized structure parameters, the birefringence of the PCF can reach 3.57 × 10−2 at a wavelength of 1.55 μm. The confinement loss is as low as 8.4 × 10−6 dB/m. The nonlinear coefficient is up to 41 W−1·km−1. The dispersion is relatively flat within the range from 1.3 μm to 1.9 μm. These remarkable characteristics render the proposed PCF a strong candidate for applications in polarization preservation, dispersion compensation, wideband supercontinuum generation, and other related fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.