Abstract

Solid acid catalyst plays a crucial role in the petroleum refinery industry and bio-refinery technology. In this work, p-phenolsulfonic acid (PSA) was successfully grafted onto the surface of KH560-modified zirconium phosphate (K-ZrP) in a facile routine. The structure and property of this organic-inorganic combined solid acid PSA/K-ZrP-x were characterized via XRD, FTIR, 13C solid-state NMR, TG, N2 adsorption-desorption, SEM, pyridine-adsorption FTIR and XPS technologies. The characterization results showed that KH560 can bond with ZrP and promote the grafting of PSA on the surface of K-ZrP via the condensation reaction between its epoxy ring and the phenolic hydroxyl group in PSA. Consequently, PSA/K-ZrP-2 exhibited excellent performance and stability in the transesterification between glycerol and methyl acetate among the tested H3PW12O40, Amberlyst-45, HBEA, HZSM-5, ZrP, AlCl3 and FeCl3 catalysts. The calculated conversion of glycerol reached 81.3% with a 97.9% selectivity for monoacetin (MAG) and diacetin (DAG) with a 2.2% dosage of [H+] at 100 °C for 4 h. The highest specific activity of PSA/K-ZrP-2 reached 24028.2 mg-glycerol/g-cat/h in a short reaction time (at 0.17 h), and it could be recycled five times without obvious deactivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call