Abstract
In the presence of water vapour and a suitable catalyst, ethanol is converted to acetone rather than to ethylene and acetaldehyde. In order to develop an appropriate catalyst for this reaction, steady-state catalytic activities and selectivities were studied for 24 oxide catalysts. It was found that the acetone selectivity is high on a catalyst having both surface acidity and basicity, suggesting that the acetone formation is an acid-base bifunctional catalytic reaction. Iron oxide is superior to the other oxides studied here in both conversion and acetone selectivity. The superiority is greatly enhanced by mixing iron oxide with zinc oxide. The preparation method for the iron–zinc mixed oxide catalyst was also studied and it was found that the optimal composition is Zn/(Fe + Zn)= 0.1–0.4 and that the optimal condition for calcination is 773 K for 3 h. The catalyst gave 100% ethanol conversion and 94% acetone selectivity at a reaction temperature of 713 K. It is initially a mixture of Fe2O3 and ZnO but is converted to a spinel type compound, ZnFe2O4, during the reaction. The optimal reaction temperature was determined to be 713 K, and at this temperature, the acetone yield decreased by 34% after a time of 24 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.