Abstract
In this paper, we propose a new numerical method namely, the trivariate spectral collocation method for solving two-dimensional nonlinear partial differential equations (PDEs) arising from unsteady processes. The problems considered are nonlinear PDEs defined on regular geometries. In the current solution approach, the quasi-linearization method is used to simplify the nonlinear PDEs. The solutions of the linearized PDEs are assumed to be trivariate Lagrange interpolating polynomials constructed using Chebyshev Gauss-Lobatto (CGL) points. A purely spectral collocation-based discretization is employed on the two space variables and the time variable to yield a system of linear algebraic equations that are solved by iteration. The numerical scheme is tested on four typical examples of nonlinear PDEs reported in the literature as a single equation or system of equations. Numerical results confirm that the proposed solution approach is highly accurate and computationally efficient when applied to solve two-dimensional initial-boundary value problems defined on small time intervals and hence it is a reliable alternative numerical method for solving this class of problems. The new error bound theorems and proofs on trivariate polynomial interpolation that we present support findings from the numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.