Abstract

Delta check (DC) is widely used for detecting sample mix-up. Owing to the inadequate error detection and high false-positive rate, the implementation of DC in real-world settings is labor-intensive and rarely capable of absolute detection of sample mix-ups. The aim of the study was to develop a highly accurate DC method based on designed deep learning to detect sample mix-up. A total of 22 routine hematology test items were adopted for the study. The hematology test results, collected from two hospital laboratories, were independently divided into training, validation, and test sets. By selecting six mainstream algorithms, the Deep Belief Network (DBN) was able to learn error-free and artificially (intentionally) mixed sample results. The model's analytical performance was evaluated using training and test sets. The model's clinical validity was evaluated by comparing it with three well-recognized statistical methods. When the accuracy of our model in the training set reached 0.931 at the 22nd epoch, the corresponding accuracy in the validation set was equal to 0.922. The loss values for the training and validation sets showed a similar (change) trend over time. The accuracy in the test set was 0.931 and the area under the receiver operating characteristic curve was 0.977. DBN demonstrated better performance than the three comparator statistical methods. The accuracy of DBN and revised weighted delta check (RwCDI) was 0.931 and 0.909, respectively. DBN performed significantly better than RCV and EDC. Of all test items, the absolute difference of DC yielded higher accuracy than the relative difference for all methods. The findings indicate that input of a group of hematology test items provides more comprehensive information for the accurate detection of sample mix-up by machine learning (ML) when compared with a single test item input method. The DC method based on DBN demonstrated highly effective sample mix-up identification performance in real-world clinical settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.