Abstract

Fluid flow phenomena in the Stokesian regime abounds in nature as well as in microfluidic applications. Discretizations based on boundary integral formulations for such flow problems allow for a reduction in dimensionality but have to deal with dense matrices and the numerical evaluation of integrals with singular kernels. The focus of this paper is the discretization of wall confinements, and specifically the numerical treatment of flat solid boundaries (walls), for which a set of high-order quadrature rules that accurately integrate the singular kernel of the Stokes equations are developed. Discretizing by Nyström’s method, the accuracy of the numerical integration determines the accuracy of the solution of the boundary integral equations, and a higher order quadrature method yields a large gain in accuracy at negligible cost. The structure of the resulting submatrix associated with each wall is exploited in order to substantially reduce the memory usage. The expected convergence of the quadrature rules is validated through numerical tests, and this boundary treatment is further applied to the classical problem of a sedimenting sphere in the vicinity of solid walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.