Abstract

BackgroundWhile the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood. Here, we used a genome-wide approach to identify genes with differences in both DNA methylation and expression associated with a high-fat diet in mice.ResultsWe weaned genetically identical Small (SM/J) mice onto a high-fat or low-fat diet and measured their weights weekly, tested their glucose and insulin tolerance, assessed serum biomarkers, and weighed their organs at necropsy. We measured liver gene expression with RNA-seq (using 21 total libraries, each pooled with 2 mice of the same sex and diet) and DNA methylation with MRE-seq and MeDIP-seq (using 8 total libraries, each pooled with 4 mice of the same sex and diet). There were 4356 genes with expression differences associated with diet, with 184 genes exhibiting a sex-by-diet interaction. Dietary fat dysregulated several pathways, including those involved in cytokine-cytokine receptor interaction, chemokine signaling, and oxidative phosphorylation. Over 7000 genes had differentially methylated regions associated with diet, which occurred in regulatory regions more often than expected by chance. Only 5–10% of differentially methylated regions occurred in differentially expressed genes, however this was more often than expected by chance (p = 2.2 × 10− 8).ConclusionsDiscovering the gene expression and methylation changes associated with a high-fat diet can help to identify new targets for epigenetic therapies and inform about the physiological changes in obesity. Here, we identified numerous genes with altered expression and methylation that are promising candidates for further study.

Highlights

  • While the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood

  • For each differentially methylated regions (DMRs), we identified the nearest gene to it, if it fell within a gene, if it fell within a promoter, if it contained a known regulatory element listed in Ensembl [45], and if the gene closest to it was already known to be involved in obesity, diabetes mellitus, or cardiovascular diseases based on Phenopedia’s continuously updated list of genes uncovered by genetic association studies in humans

  • Diet significantly affected the response to intraperitoneal glucose and insulin tolerance testing, with HF

Read more

Summary

Introduction

While the genetics of obesity has been well defined, the epigenetics of obesity is poorly understood. Today 35% of adults in the United States are obese, and 42% are predicted to be by 2030 [4,5,6]. This is a major threat to public health, since obesity is associated with cancer, stroke, asthma, type 2 diabetes, hypertension, heart attack, and other serious health conditions [7]. The best studied causes of obesity are genetics, the environment, and their interaction [8,9,10,11,12,13].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call