Abstract
The paper introduces a new weak approximation algorithm for stochastic differential equations (SDEs) of McKean–Vlasov type. The arbitrary order discretization scheme is available and is given using Malliavin weights, certain polynomial weights of Brownian motion, which play a role as correction of the approximation. The new weak approximation scheme works even if the test function is not smooth. In other words, the expectation of irregular functionals of McKean–Vlasov SDEs such as probability distribution functions are approximated through the proposed scheme. The effectiveness of the higher order scheme is confirmed by numerical examples for McKean–Vlasov SDEs including the Kuramoto model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.