Abstract

This talk develops a higher order shear deformation model of a periodically sectioned plate. A parabolic deformation expression is used with periodic analysis methods to calculate the displacement field as a function of plate spatial location. The problem is formulated by writing the transverse displacement field and the in-plane rotations as a series solution of unknown wave propagation coefficients multiplied by an exponential indexed wavenumber term in the direction of varying structural properties multiplied by an exponential constant term in the direction of constant structural properties. These expansions, along with various structural properties written using Fourier summations, are inserted into the governing differential equations that were derived using Hamilton’s principle. The equations are now algebraic expressions that can be orthogonalized and written in a global matrix format whose solution is the wave propagation coefficients, thus yielding the transverse and in-plane displacements of the...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.