Abstract

A new mimetic finite difference method for the diffusion problem is developed by using a linear interpolation for the numerical fluxes. This approach provides a higher-order accurate approximation to the flux of the exact solution. In analogy with the original formulation, a family of local scalar products is constructed to satisfy the fundamental properties of local consistency and spectral stability. The scalar solution field is approximated by a piecewise constant function. A computationally efficient postprocessing technique is also proposed to get a piecewise quadratic polynomial approximation to the exact scalar variable. Finally, optimal convergence rates and accuracy improvement with respect to the lower-order formulation are shown by numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.