Abstract

This paper aims to extend the Caputo–Atangana–Baleanu (ABC) and Riemann–Atangana–Baleanu (ABR) fractional derivatives with respect to another function, from fractional order mu in (0,1] to an arbitrary order mu in (n,n+1], n=0,1,2,dots . Also, their corresponding Atangana–Baleanu (AB) fractional integral is extended. Additionally, several properties of such definitions are proved. Moreover, the generalization of Gronwall’s inequality in the framework of the AB fractional integral with respect to another function is introduced. Furthermore, Picard’s iterative method is employed to discuss the existence and uniqueness of the solution for a higher-order initial fractional differential equation involving an ABC operator with respect to another function. Finally, examples are given to illustrate the effectiveness of the main findings. The idea of this work may attract many researchers in the future to study some inequalities and fractional differential equations that are related to AB fractional calculus with respect to another function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.