Abstract
Ball-end milling tools have been widely used in machining of complex freeform surfaces. The precision and efficiency of ball-end milling process can be improved by an accurate modeling of the tools, the tools' paths and the machining conditions. However, only rough geometric models have been applied so far, which do not consider the machining conditions and the physical changes. To achieve the best results, an accurate modeling of the cutting edge and the physical behavior of the entire cutter is needed. This paper proposes an articulated model that enumerates both the geometric characteristics and the physical effects acting on the cutting edge-segment of a ball-end milling cutter. The model considers the deformations caused by the milling forces, vibration, spindle eccentricity, together with thermal deformation and wear of the cutter. The mathematical description of the behavior has been transferred into a computational model. The pilot implementation has been tested in a practical application. The first findings show that the proposed theoretical model and implementation provide sufficiently precise information about the behavior of the cutter in virtual simulations; hence it can be the basis of a fully fledged and more efficient planning of milling processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.